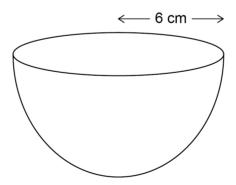

1 Here are two solids.


Cylinder

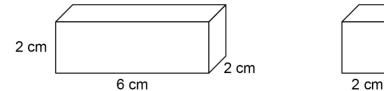
radius 4 cm height 10 cm

Hemisphere

radius 6 cm

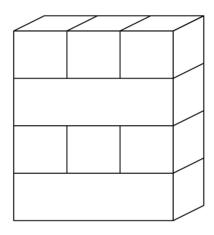
volume of a hemisphere = $\frac{2}{3} \pi r^3$ where r is the radius

Which solid has the greater volume?


You must show your working.

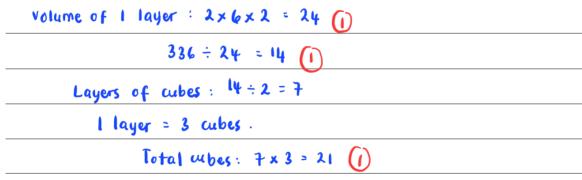
[4 marks]

Volume of a hemisphere:
$$\frac{2}{3} \times \pi \times 6^3$$

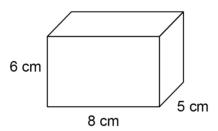

Answer Glinder (1)

2 Here is a small cuboid and a cube.

Small cuboids and cubes are stacked in layers to make larger cuboids.


Here is a cuboid made with four layers.

The pattern is continued to make a cuboid with volume 336 cm³


How many **cubes** are used?

[3 marks]

Answer 21

3 Here is a cuboid.

Work out the volume.

6 x 8 x 5 = 240 (1)

Answer _____ cm³

4 A ball contains 5000 cm³ of air.

More air is pumped into the ball at a rate of 160 cm³ per second.

The ball is full of air when it becomes a sphere with radius 15 cm

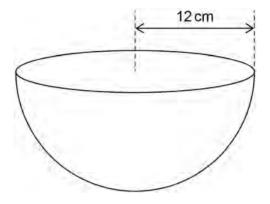
Volume of a sphere = $\frac{4}{3}\pi r^3$ where r is the radius

Does it take less than 1 minute to fill the ball?

You **must** show your working.

Volume of ball = $\frac{4}{3} \times \pi \times 15^3$

[4 marks]


time taken =
$$\frac{9137 \text{ cm}^3}{160 \text{ cm}^3 \text{ s}^4} = 57.1 \text{ s}$$

Yes. It takes only 57.1 seconds to fill the ball.

5

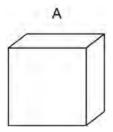
Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

A bowl is a hemisphere with radius 12 cm

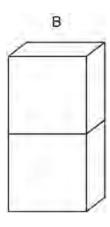
Water is poured into the bowl at a rate of 325 cm³ per second for 8 seconds.

Does the water fill **more than** 70% of the bowl?

You **must** show your working.


[4 marks]

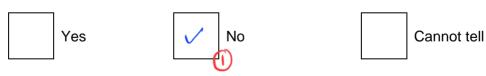
volume of hemisphere =
$$\frac{1}{21} \times \frac{4}{3}^2 \times tc \times 12^3$$


Yes. The water fills 71.8% of the bowl-

[2 marks]

6 Here is cuboid A.

Cuboid B is made from two of cuboid A.

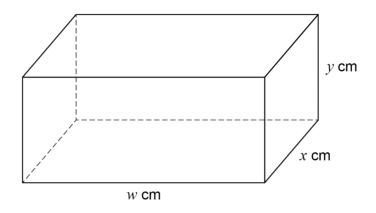

volume of A: volume of B = 1:2

Matthew says,

"surface area of A: surface area of B must be 1: 2 because B is made of 2 of A."

Is Matthew correct?

Tick one box.



Give a reason for your answer.

2 faces are hidden	. 🕕		

7 (a) Here is a cuboid.

w, x and y are **different** whole numbers.

The total length of all the edges of the cuboid is 80 cm

The volume is $\mbox{greater}$ than 200 \mbox{cm}^3

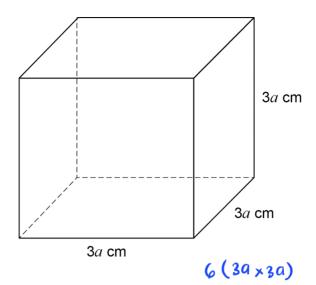
Work out one possible set of values for w, x and y.

[2 marks]

$$4w + 4y + 4x = 80$$

$$4(w + x + y) = 80$$

$$w + x + y = 20$$


$$w + x + y = 20$$

$$1d = 8, x = 7, y = 5$$

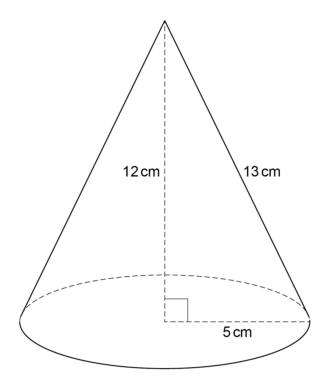
$$8 + 7 + 5 = 20, 8 \times 7 \times 5 = 280$$

$$w =$$
 $x =$ $y =$ 5

7 (b) Here is a solid cube.

Circle the expression for the **total** surface area in cm² ((9a²)

[1 mark]


36*a*

54*a*

 $36a^{2}$

8 Here is a cone.

8 (a)

Curved surface area of a cone = $\pi r l$ where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of $\boldsymbol{\pi}$

Curved surface area of the cone =
$$\pi \times 5 \times 12$$
 = $60\pi\,\text{cm}^2$

What mistake has she made?

[1 mark]

The value of 1 should be 13 instead of 12

-				7		
8 (b)	Adam uses $\pi = 3$ to estimate the area of the base of the cone.					
	Work out his estimate.	.				
	Area of the base of		[2 marks]			
	- 3 × 5 ²					
	: 3 × 25 V					
	= 75 cm² /					
	Answer	75	cm ²			
8 (c)	Beth uses $\pi = 3.14$ to estimate the area of the base of the cone.					
	Is Beth's estimate more than or less than Adam's estimate?					
	Tick a box.					
	More than	Less than				
	Give a reason for your answer.					
				[1 mark]		